Fuzzy Based Image Dimensionality Reduction Using Shape Primitives for Efficient Face Recognition
نویسندگان
چکیده
Today face recognition capability of the human visual system plays a significant role in day to day life due to numerous important applications for automatic face recognition. One of the problems with the recent image classification and recognition approaches are they have to extract features on the entire image and on the large grey level range of the image. The present paper overcomes this by deriving an approach that reduces the dimensionality of the image using Shape primitives and reducing the grey level range by using a fuzzy logic while preserving the significant attributes of the texture. The present paper proposed an Image Dimensionality Reduction using shape Primitives (IDRSP) model for efficient face recognition. Fuzzy logic is applied on IDRSP facial model to reduce the grey level range from 0 to 4. This makes the proposed fuzzy based IDRSP (FIDRSP) model suitable to Grey level co-occurrence matrices. The proposed FIDRSP model with GLCM features are compared with existing face recognition algorithm. The results indicate the efficacy of the proposed method.
منابع مشابه
2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملFace Recognition Using Principal Geodesic Analysis and Manifold Learning
This paper describes how face recognition can be effected using 3D shape information extracted from single 2D image views. We characterise the shape of the field of facial normals using a statistical model based on principal geodesic analysis. The model can be fitted to 2D brightness images of faces to recover a vector of shape parameters. Since it captures variations in a field of surface norm...
متن کاملKernel-based Fuzzy Feature Extraction Method and Its Application to Face Image Classification
The Hughes phenomenon (or the curse of dimensionality) shows two essential directions for improving the classification performance on high-dimensional and small sample size (SSS) problems. One is to reduce the dimensionality of applied data by feature extraction or feature selection methods. The other is to increase the training sample size. In recent years some kernel-based feature extraction ...
متن کاملFace Recognition Using Shape and Texture
We introduce in this paper a new face coding and recognition method which employs the Enhanced FLD (Fisher Linear Discrimimant) Model (EFM) on integrated shape (vector) and texture (‘shape-free’ image) information. Shape encodes the feature geometry of a face while texture provides a normalized shape-free image by warping the original face image to the mean shape, i.e., the average of aligned s...
متن کامل